Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Front Psychol ; 15: 1379652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725946

RESUMEN

The development of facial expression recognition ability in children is crucial for their emotional cognition and social interactions. In this study, 510 children aged between 6 and 15 participated in a two forced-choice task of facial expression recognition. The findings supported that recognition of the six basic facial expressions reached a relatively stable mature level around 8-9 years old. Additionally, model fitting results indicated that children showed the most significant improvement in recognizing expressions of disgust, closely followed by fear. Conversely, recognition of expressions of happiness and sadness showed slower improvement across different age groups. Regarding gender differences, girls exhibited a more pronounced advantage. Further model fitting revealed that boys showed more pronounced improvements in recognizing expressions of disgust, fear, and anger, while girls showed more pronounced improvements in recognizing expressions of surprise, sadness, and happiness. These clear findings suggested the synchronous developmental trajectory of facial expression recognition from childhood to adolescence, likely influenced by socialization processes and interactions related to brain maturation.

2.
J Org Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718346

RESUMEN

Alkyl- and arylpyridines and 2,2'-bipyridines are conventionally prepared by Minisci reactions of pyridines and transition metal-catalyzed coupling reactions of halopyridines. Herein, purple light-promoted radical coupling reactions of 2- or 4-bromopyridines with Grignard reagents in Et2O or a mixture of Et2O and tetrahydrofuran in regular glassware without the need for a transition metal catalyst were disclosed for the first time. Methyl, primary and secondary alkyl, cycloalkyl, aryl, heteroaryl, pyridyl, and alkynyl Grignard reagents were compatible with the protocol. As a result, alkyl- and arylpyridines and 2,2'-bipyridines were easily prepared. Single electron transfer from the Grignard reagent to bromopyridine was stimulated by purple light. An electron extruded from the dimerization of the Grignard reagent worked as the catalyst. Light on/off experiments indicated that constant irradiation was required for product formation. Studies of radical clock substrates verified the involvement of a pyridyl radical from bromopyridine and the noninvolvement of an alkyl or aryl radical from the Grignard reagent. The available proof supports a photoinduced SRN mechanism for the new coupling reactions.

3.
Phys Chem Chem Phys ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721813

RESUMEN

Magnetic molecules are promising candidates for quantum information processing (QIP) due to their tunable electron structures and quantum properties. A high spin Co(II) complex, CoH2dota, is studied for its potential to be used as a quantum bit (qubit) utilizing continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopy at low temperature. On the X-band microwave energy scale, the system can be treated as an effective spin 1/2 with a strongly anisotropic g-tensor resulting from the significant spin-orbital coupling. An experimental and theoretical study is conducted to investigate the anisotropic Rabi oscillations of the two magnetically equivalent spin centres with different orientations in a single crystal sample, which aims to verify the relationship between the Rabi frequency and the orientation of the g-tensor. The findings of this study show that an effective quantum manipulation method is developed for orthorhombic spin systems.

4.
Res Sq ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585715

RESUMEN

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity and response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse brain ex vivo and in vivo. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. Lastly, we demonstrated acute opioid-induced generation of H2O2 signal in vivo which highlights redox-based mechanisms of GPCR regulation. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for understanding diseases associated with oxidative stress, such as cancer, neurodegenerative, and cardiovascular diseases.

5.
Clin Med Insights Oncol ; 18: 11795549241236896, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645894

RESUMEN

By modifying immune cells, immunotherapy can activate immune response to establish long-term immune memory and prevent tumor recurrence. However, their effectiveness is largely constricted by the poor immunogenicity, immune escape, and immune tolerance of the tumor. This is related to the characteristics of the tumor itself, such as genome instability and mutation. The combination of various nanocarriers with tumor immunotherapy is beneficial for overcoming the shortcomings of traditional immunotherapy. Nanocarriers coated by cell membranes can extend blood circulation time, improve ability to evade immune clearance, and enhance targeting, thus significantly enhancing the efficacy of immunotherapy and showing great potential in tumor immunotherapy. This article reviews the application research progress of different types of cell membrane-modified nanocarriers in tumor immunotherapy, immunotherapy combination therapy, and tumor vaccines, and provides prospects for future research.

6.
J Sci Food Agric ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619112

RESUMEN

BACKGROUND: The adhesion of probiotics to the intestine is crucial for their probiotic function. In previous studies, Tremella polysaccharides (TPS) (with sodium casein) have shown the potential to encapsulate probiotics and protect them in a simulated gastrointestinal tract. This study explored the effect of TPS (with sodium casein) on the adhesion of probiotics. RESULTS: Lactobacillus plantarum was coated with TPS and sodium casein in different proportions, and was freeze-dried. The rheological properties of the mixture of probiotics powder and mucin solution were determined by static and dynamic rheological analysis. Aqueous solutions of probiotic powder and mucin mixture exhibited pseudoplastic fluid rheological properties. The higher the proportion of TPS content, the higher the apparent viscosity and yield stress. The mixed bacterial powder and mucin fluid displayed thixotropy and was in accordance with the Herschel-Bulkley model. The TPS increased the bio-adhesive force of the probiotic powder and mucin. When using TPS as the only carbon source, the adhesion of L. plantarum to Caco-2 cells increased by 228% in comparison with glucose in vitro. Twelve adhesive proteins were also detected in the whole-cell proteome of L. plantarum. Among them, ten adhesive proteins occurred abundantly when grown with TPS as a carbon source. CONCLUSION: Tremella polysaccharides therefore possess probiotic properties and can promote the intestinal adhesion of L. plantarum. © 2024 Society of Chemical Industry.

7.
Comput Biol Chem ; 110: 108072, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38636391

RESUMEN

The methylation and demethylation of lysine and arginine side chains are fundamental processes in gene regulation and disease development. Histone lysine methylation, controlled by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), plays a vital role in maintaining cellular homeostasis and has been implicated in diseases such as cancer and aging. This study focuses on two members of the lysine demethylase (KDM) family, KDM4E and KDM6B, which are significant in gene regulation and disease pathogenesis. KDM4E demonstrates selectivity for gene regulation, particularly concerning cancer, while KDM6B is implicated in inflammation and cancer. The study utilizes specific inhibitors, DA-24905 and GSK-J1, showcasing their exceptional selectivity for KDM4E and KDM6B, respectively. Employing an array of computational simulations, including sequence alignment, molecular docking, dynamics simulations, and free energy calculations, we conclude that although the binding cavities of KDM4E and KDM6B has high similarity, there are still some different crucial amino acid residues, indicating diverse binding forms between protein and ligands. Various interaction predominates when proteins are bound to different ligands, which also has significant effect on selective inhibition. These findings provide insights into potential therapeutic strategies for diseases by selectively targeting these KDM members.

8.
Heliyon ; 10(8): e29268, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638976

RESUMEN

The establishment of a platelet-apheresis donor database may provide a feasible solution to improve the efficacy of platelet transfusion in patients with immune platelet transfusion refractoriness (PTR). This study aimed to establish HLA genotype database in Suzhou, to provide HLA-I compatible platelets for PTR patients to ensure the safety and effectiveness of platelet transfusions. We used a polymerase chain reaction sequence-based typing (PCR-SBT) method to establish the database by performing high-resolution HLA-A, -B, and -C genotyping on 900 platelet-apheresis donors. HLA-I antibody was detected in patients using a Luminex device, and HLA-I gene matching was performed by an HLA-Matchmaker. We found that the highest frequency of the HLA-A allele was A*11:01 (17.06 %), followed by A*24:02 (14.67 %) and A*02:01 (13.61 %). The highest frequency of the HLA-B allele was B*46:01 (9.78 %), followed by B*40:01 (8.39 %) and B*13:02 (33 %). After the detection of platelet antibodies in 74 patients with immune PTR, we found 30 HLA-A antibodies and 48 HLA-B antibodies, and there were a variety of high frequency antibodies whose alleles were low in the donor database, such as HLA-A*68:02, and B*57:01. After avoiding donor-specific antibodies (DSA) matching, 102 of 209 platelet-compatible transfusions were effective, resulting in an effective rate of 48.8 %, which significantly improved the efficacy of platelet transfusion. The establishment of a platelet donor database is of great significance to improve the therapeutic effect of platelet transfusion in patients with hematologic disorder, and save blood resources, and it is also the premise and guarantee of precise platelet transfusion.

9.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585867

RESUMEN

Persistence reinforces continuous action, which benefits animals in many aspects. Diverse information may trigger animals to start a persistent movement. However, it is unclear how the brain decides to persist with current actions by selecting specific information. Using single-unit extracellular recordings and opto-tagging in awake mice, we demonstrated that a group of dorsal mPFC (dmPFC) motor cortex projecting (MP) neurons initiate a persistent movement selectively encoding contextual information rather than natural valence. Inactivation of dmPFC MP neurons impairs the initiation and reduces neuronal activity in the insular and motor cortex. Finally, a computational model suggests that a successive sensory stimulus acts as an input signal for the dmPFC MP neurons to initiate a persistent movement. These results reveal a neural initiation mechanism on the persistent movement.

10.
J Agric Food Chem ; 72(17): 9555-9566, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648511

RESUMEN

The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like ß-xylosidases, ß-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.


Asunto(s)
Penicillium , Metabolismo Secundario , Penicillium/metabolismo , Humanos , Animales , Policétidos/metabolismo , Policétidos/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinflamatorios/metabolismo , Antiinflamatorios/química , Antiinflamatorios/farmacología
11.
Neurosci Bull ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592581

RESUMEN

Disruption of the blood-spinal cord barrier (BSCB) is a critical event in the secondary injury following spinal cord injury (SCI). Mertk has been reported to play an important role in regulating inflammation and cytoskeletal dynamics. However, the specific involvement of Mertk in BSCB remains elusive. Here, we demonstrated a distinct role of Mertk in the repair of BSCB. Mertk expression is decreased in endothelial cells following SCI. Overexpression of Mertk upregulated tight junction proteins (TJs), reducing BSCB permeability and subsequently inhibiting inflammation and apoptosis. Ultimately, this led to enhanced neural regeneration and functional recovery. Further experiments revealed that the RhoA/Rock1/P-MLC pathway plays a key role in the effects of Mertk. These findings highlight the role of Mertk in promoting SCI recovery through its ability to mitigate BSCB permeability and may provide potential targets for SCI repair.

12.
J Adv Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677545

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW: The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.

13.
Phytomedicine ; 128: 155349, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522315

RESUMEN

BACKGROUND: Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal microbiota through metabolizing phosphatidylcholine, choline, l-carnitine and betaine in the diet, has been implicated in the pathogenesis of atherosclerosis (AS). Concurrently, dietary polyphenols have garnered attention for their potential to ameliorate obesity, diabetes and atherosclerosis primarily by modulating the intestinal microbial structure. Hickory (Carya cathayensis) nut, a polyphenol-rich food product favored for its palatability, emerges as a candidate for exploration. HYPOTHESIS/PURPOSE: The relationship between polyphenol of hickory nut and atherosclerosis prevention will be firstly clarified, providing theoretical basis for the discovery of natural products counteracting TMAO-induced AS process in hickory nut. STUDY DESIGN AND METHODS: Employing Enzyme-linked Immunosorbent Assay (ELISA) and histological examination of aortic samples, the effects of total polyphenol extract on obesity index, inflammatory index and pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high choline diet were evaluated. Further, the composition, abundance, and function of mouse gut microbiota were analyzed through 16srDNA sequencing. Concurrently, the levels of TMAO and the expression of key enzymes (CutC and FMO3) involved in its synthesis are quantified using ELISA, Western Blot and Real-Time Quantitative PCR (RT-qPCR). Additionally, targeted metabolomic profiling of the hickory nut polyphenol extract was conducted, accompanied by molecular docking simulations to predict interactions between candidate polyphenols and the CutC/FMO3 using Autodock Vina. Finally, the docking prediction were verified by microscale thermophoresis (MST) . RESULTS: Polyphenol extracts of hickory nut improved the index of obesity and inflammation, and alleviated the pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high-choline diet. Meanwhile, these polyphenol extracts also changed the composition and function of intestinal microbiota, and increased the abundance of microorganisms in mice. Notably, the abundance of intestinal microbiota endowed with CutC gene was significantly reduced, coherent with expression of CutC catalyzing TMA production. Moreover, polyphenol extracts also decreased the expression of FMO3 in the liver, contributing to the reduction of TMAO levels in serum. Furthermore, metabonomic profile analysis of these polyphenol extracts identified 647 kinds of polyphenols. Molecular docking predication further demonstrated that Casuariin and Cinnamtannin B2 had the most potential inhibition on the enzymatic activities of CutC or FMO3, respectively. Notably, MST analysis corroborated the potential for direct interaction between CutC enzyme and available polyphenols such as Corilagin, (-)-Gallocatechin gallate and Epigallocatechin gallate. CONCLUSION: Hickory polyphenol extract can mitigate HFD-induced AS by regulating intestinal microflora in murine models. In addition, TMA-FMO3-TMAO pathway may play a key role in this process. This research unveils, for the inaugural time, the complex interaction between hickory nut-derived polyphenols and gut microbial, providing novel insights into the role of dietary polyphenols in AS prevention.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Metilaminas , Ratones Endogámicos C57BL , Oxigenasas , Polifenoles , Animales , Polifenoles/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metilaminas/metabolismo , Aterosclerosis/prevención & control , Aterosclerosis/tratamiento farmacológico , Masculino , Ratones , Nueces/química , Dieta Alta en Grasa/efectos adversos , Colina , Extractos Vegetales/farmacología , Extractos Vegetales/química , Obesidad/prevención & control , Simulación del Acoplamiento Molecular
14.
Biol Trace Elem Res ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528285

RESUMEN

Selenium nanoparticle (Nano-Se) is a new type of selenium supplement, which can improve the deficiency of traditional selenium supplements and maintain its physiological activity. Due to industrial pollution and irrational use in agriculture, Cu overexposure often occurs in animals and humans. In this study, Nano-Se alleviated CuSO4-induced testicular Cu accumulation, serum testosterone level decrease, testicular structural damage, and decrease in sperm quality. Meanwhile, Nano-Se reduced the ROS content in mice testis and enhanced the activities of T-AOC, GSH, SOD, and CAT compared with CuSO4 group. Furthermore, Nano-Se alleviated CuSO4-induced apoptosis by increasing the protein expression of Cleaved-Caspase-3, Cleaved-Caspase-9, Cleaved-Caspase-12, and Bax/Bcl-2 compared with CuSO4 group. At the same time, Nano-Se reversed CuSO4-induced increase of γ-H2AX protein expression in mice testis. In conclusion, this study confirmed that Nano-Se could alleviate oxidative stress, apoptosis, and DNA damage in the testis of mice with Cu excess, thereby protecting the spermatogenesis disorder induced by Cu.

15.
NPJ Vaccines ; 9(1): 64, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509167

RESUMEN

Despite prolonged surveillance and interventions, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to pose a severe global health burden. Thus, we developed a chimpanzee adenovirus-based combination vaccine, AdC68-HATRBD, with dual specificity against SARS-CoV-2 and influenza virus. When used as a standalone vaccine, intranasal immunization with AdC68-HATRBD induced comprehensive and potent immune responses consisting of immunoglobin (Ig) G, mucosal IgA, neutralizing antibodies, and memory T cells, which protected the mice from BA.5.2 and pandemic H1N1 infections. When used as a heterologous booster, AdC68-HATRBD markedly improved the protective immune response of the licensed SARS-CoV-2 or influenza vaccine. Therefore, whether administered intranasally as a standalone or booster vaccine, this combination vaccine is a valuable strategy to enhance the overall vaccine efficacy by inducing robust systemic and mucosal immune responses, thereby conferring dual lines of immunological defenses for these two viruses.

16.
BMC Microbiol ; 24(1): 93, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515035

RESUMEN

Plant growth promoting microbe assisted phytoremediation is considered a more effective approach to rehabilitation than the single use of plants, but underlying mechanism is still unclear. In this study, we combined transcriptomic and physiological methods to explore the mechanism of plant growth promoting microbe Trichoderma citrinoviride HT-1 assisted phytoremediation of Cd contaminated water by Phragmites australis. The results show that the strain HT-1 significantly promoted P. australis growth, increased the photosynthetic rate, enhanced antioxidant enzyme activities. The chlorophyll content and the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were increased by 83.78%, 23.17%, 47.60%, 97.14% and 12.23% on average, and decreased the content of malondialdehyde (MDA) by 31.10%. At the same time, strain HT-1 improved the absorption and transport of Cd in P. australis, and the removal rate of Cd was increased by 7.56% on average. Transcriptome analysis showed that strain HT-1 induced significant up-regulated the expression of genes related to oxidative phosphorylation and ribosome pathways, and these upregulated genes promoted P. australis remediation efficiency and resistance to Cd stress. Our results provide a mechanistic understanding of plant growth promoting microbe assisted phytoremediation under Cd stress.


Asunto(s)
Cadmio , Hypocreales , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Agua , Antioxidantes/metabolismo , Poaceae/metabolismo , Perfilación de la Expresión Génica , Contaminantes del Suelo/metabolismo
17.
J Agric Food Chem ; 72(12): 6500-6508, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470347

RESUMEN

Dipicolinic acid (DPA), a cyclic diacid, has garnered significant interest due to its potential applications in antimicrobial agents, antioxidants, chelating reagents, and polymer precursors. However, its natural bioproduction is limited since DPA is only accumulated in Bacillus and Clostridium species during sporulation. Thus, heterologous production by engineered strains is of paramount importance for developing a sustainable biological route for DPA production. Pseudomonas putida KT2440 has emerged as a promising host for the production of various chemicals thanks to its robustness, metabolic versatility, and genetic tractability. The dominant Entner-Doudoroff (ED) pathway for glucose metabolism in this strain offers an ideal route for DPA production due to the advantage of NADPH generation and the naturally balanced flux between glyceraldehyde-3-phosphate and pyruvate, which are both precursors for DPA synthesis. In this study, DPA production via the ED pathway was in silico designed in P. putida KT2440. The systematically engineered strain produced dipicolinate with a titer of 11.72 g/L from glucose in a 5 L fermentor. This approach not only provides a sustainable green route for DPA production but also expands our understanding of the metabolic potential of the ED pathway in P. putida KT2440.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Metabolismo de los Hidratos de Carbono , Reactores Biológicos , Antioxidantes/metabolismo , Ácido Pirúvico/metabolismo , Ingeniería Metabólica
18.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542445

RESUMEN

Panax ginseng C. A. Meyer (Ginseng) is one of the most used traditional Chinese herbal medicines, with its roots being used as the main common medicinal parts; its therapeutic potential has garnered significant attention. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) is a family of early auxin-responsive genes capable of regulating root development in plants through the auxin signaling pathway. In the present study, 84 Aux/IAA genes were identified from the ginseng genome and their complexity and diversity were determined through their protein domains, phylogenetic relationships, gene structures, and cis-acting element predictions. Phylogenetic analyses classified PgIAA into six subgroups, with members in the same group showing greater sequence similarity. Analyses of interspecific collinearity suggest that segmental duplications likely drove the evolution of PgIAA genes, followed by purifying selection. An analysis of cis-regulatory elements suggested that PgIAA family genes may be involved in the regulation of plant hormones. RNA-seq data show that the expression pattern of Aux/IAA genes in Ginseng is tissue-specific, and PgIAA02 and PgIAA36 are specifically highly expressed in lateral, fibrous, and arm roots, suggesting their potential function in root development. The PgIAA02 overexpression lines exhibited an inhibition of lateral root growth in Ginseng. In addition, yeast two-hybrid and subcellular localization experiments showed that PgIAA02 interacted with PgARF22/PgARF36 (ARF: auxin response factor) in the nucleus and participated in the biological process of root development. The above results lay the foundation for an in-depth study of Aux/IAA and provide preliminary information for further research on the role of the Aux/IAA gene family in the root development of Ginseng.


Asunto(s)
Panax , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Panax/genética , Panax/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas
19.
Biomed Opt Express ; 15(3): 1910-1925, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495688

RESUMEN

Diffuse optical tomography (DOT) employs near-infrared light to reveal the optical parameters of biological tissues. Due to the strong scattering of photons in tissues and the limited surface measurements, DOT reconstruction is severely ill-posed. The Levenberg-Marquardt (LM) is a popular iteration method for DOT, however, it is computationally expensive and its reconstruction accuracy needs improvement. In this study, we propose a neural model based iteration algorithm which combines the graph neural network with Levenberg-Marquardt (GNNLM), which utilizes a graph data structure to represent the finite element mesh. In order to verify the performance of the graph neural network, two GNN variants, namely graph convolutional neural network (GCN) and graph attention neural network (GAT) were employed in the experiments. The results showed that GCNLM performs best in the simulation experiments within the training data distribution. However, GATLM exhibits superior performance in the simulation experiments outside the training data distribution and real experiments with breast-like phantoms. It demonstrated that the GATLM trained with simulation data can generalize well to situations outside the training data distribution without transfer training. This offers the possibility to provide more accurate absorption coefficient distributions in clinical practice.

20.
J Org Chem ; 89(7): 4579-4594, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38506748

RESUMEN

A palladium-catalyzed intermolecular [2 + 2 + 2] oxidative coupling-annulation of terminal alkenes and alkynes using copper(II) as the oxidant has been developed through direct C-C bond formation. These reactions provide effective access to multiaryl-substituted benzenes with high regioselectivity in the absence of any ligands. The features of this protocol are broad substrate scope, and high atom and step economy. The aggregation-induced emission properties of selected products were further investigated. These synthesized multiaryl-substituted benzenes may be worth exploring for further applications in the fields of advanced functional materials or drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...